(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
times(x, s(y)) →+ plus(times(x, y), x)
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z)))
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0'))), times(x, s(z)))
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
times,
plusThey will be analysed ascendingly in the following order:
plus < times
(8) Obligation:
TRS:
Rules:
times(
x,
plus(
y,
s(
z))) →
plus(
times(
x,
plus(
y,
times(
s(
z),
0'))),
times(
x,
s(
z)))
times(
x,
0') →
0'times(
x,
s(
y)) →
plus(
times(
x,
y),
x)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
plus, times
They will be analysed ascendingly in the following order:
plus < times
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_s:0'2_0(
a),
gen_s:0'2_0(
n4_0)) →
gen_s:0'2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
plus(gen_s:0'2_0(a), gen_s:0'2_0(0)) →RΩ(1)
gen_s:0'2_0(a)
Induction Step:
plus(gen_s:0'2_0(a), gen_s:0'2_0(+(n4_0, 1))) →RΩ(1)
s(plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0))) →IH
s(gen_s:0'2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
times(
x,
plus(
y,
s(
z))) →
plus(
times(
x,
plus(
y,
times(
s(
z),
0'))),
times(
x,
s(
z)))
times(
x,
0') →
0'times(
x,
s(
y)) →
plus(
times(
x,
y),
x)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
times
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_s:0'2_0(
a),
gen_s:0'2_0(
n421_0)) →
gen_s:0'2_0(
*(
n421_0,
a)), rt ∈ Ω(1 + a·n421
0 + n421
0)
Induction Base:
times(gen_s:0'2_0(a), gen_s:0'2_0(0)) →RΩ(1)
0'
Induction Step:
times(gen_s:0'2_0(a), gen_s:0'2_0(+(n421_0, 1))) →RΩ(1)
plus(times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)), gen_s:0'2_0(a)) →IH
plus(gen_s:0'2_0(*(c422_0, a)), gen_s:0'2_0(a)) →LΩ(1 + a)
gen_s:0'2_0(+(a, *(n421_0, a)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
times(
x,
plus(
y,
s(
z))) →
plus(
times(
x,
plus(
y,
times(
s(
z),
0'))),
times(
x,
s(
z)))
times(
x,
0') →
0'times(
x,
s(
y)) →
plus(
times(
x,
y),
x)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)) → gen_s:0'2_0(*(n421_0, a)), rt ∈ Ω(1 + a·n4210 + n4210)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)) → gen_s:0'2_0(*(n421_0, a)), rt ∈ Ω(1 + a·n4210 + n4210)
(16) BOUNDS(n^2, INF)
(17) Obligation:
TRS:
Rules:
times(
x,
plus(
y,
s(
z))) →
plus(
times(
x,
plus(
y,
times(
s(
z),
0'))),
times(
x,
s(
z)))
times(
x,
0') →
0'times(
x,
s(
y)) →
plus(
times(
x,
y),
x)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)) → gen_s:0'2_0(*(n421_0, a)), rt ∈ Ω(1 + a·n4210 + n4210)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_s:0'2_0(a), gen_s:0'2_0(n421_0)) → gen_s:0'2_0(*(n421_0, a)), rt ∈ Ω(1 + a·n4210 + n4210)
(19) BOUNDS(n^2, INF)
(20) Obligation:
TRS:
Rules:
times(
x,
plus(
y,
s(
z))) →
plus(
times(
x,
plus(
y,
times(
s(
z),
0'))),
times(
x,
s(
z)))
times(
x,
0') →
0'times(
x,
s(
y)) →
plus(
times(
x,
y),
x)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
Types:
times :: s:0' → s:0' → s:0'
plus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(22) BOUNDS(n^1, INF)